Rapamycin increases oxidative stress response gene expression in adult stem cells
نویسندگان
چکیده
Balancing quiescence with proliferation is of paramount importance for adult stem cells in order to avoid hyperproliferation and cell depletion. In some models, stem cell exhaustion may be reversed with the drug rapamycin, which was shown can suppress cellular senescencein vitro and extend lifespan in animals. We hypothesized that rapamycin increases the expression of oxidative stress response genes in adult stem cells, and that these gene activities diminish with age. To test our hypothesis, we exposed mice to rapamycin and then examined the transcriptome of their spermatogonial stem cells (SSCs). Gene expression microarray analysis revealed that numerous oxidative stress response genes were upregulated upon rapamycin treatment, including superoxide dismutase 1, glutathione reductase, and delta-aminolevulinate dehydratase. When we examined the expression of these genes in 55-week-old wild type SSCs, their levels were significantly reduced compared to 3-week-old SSCs, suggesting that their downregulation is coincident with the aging process in adult stem cells. We conclude that rapamycin-induced stimulation of oxidative stress response genes may promote cellular longevity in SSCs, while a decline in gene expression in aged stem cells could reflect the SSCs' diminished potential to alleviate oxidative stress, a hallmark of aging.
منابع مشابه
The Lcn2-engineered HEK-293 cells show senescence under stressful condition
Objective(s): Lipocalin2 (Lcn2) gene is highly expressed in response to various types of cellular stresses. The precise role of Lcn2 has not been fully understood yet. However, it plays a key role in controlling vital cellular processes such as proliferation, apoptosis and metabolism. Recently it was shown that Lcn2 decreases senescence and increases proliferation of mesenchymal stem cells (MSC...
متن کاملBusulfan induces oxidative stress- and Bcl-2 family gene-related apoptosis in epididymal sperm and testis of adult male mice
Introduction: Busulfan as a chemotherapeutic agent causes testicular germinal epithelium depletion and cytotoxicity in germ cells. The aim of this study was to assess antioxidant status, reactive oxygen species (ROS) generation and apoptosis-related genetic markers of adult male mouse sperm following busulfan treatment. Materials and Methods: Forty adult NMRI mice (30 ± 5 g) were divided...
متن کاملEffects of hydrogen peroxide-induced oxidative stress on the pattern of pro-apoptotic and anti-apoptotic genes expression during PC12 cells differentiation
Background and Objective: In neurodegenerative disorders, oxidative stress mediated by reactive oxygen species is strongly associated with increased neuronal damages that lead to apoptosis. Pro-apoptotic and anti-apoptotic gene expressions were changed during cell differentiation that affect cell viability and differentiation. This study was conducted to determine the effects of hydrogen peroxi...
متن کاملMesenchymal Stem Cells with Granulocyte Colony-Stimulating Factor Reduce Stress Oxidative Factors in Parkinson\'s Disease
Background: Recent studies have shown that bone marrow mesenchymal stem cells (BMSCs) have a putative ability to promote neurogenesis and produce behavioral and functional improvement. Our previous study demonstrated that co-treatment of granulocyte colony-stimulating factor (G-CSF) and BMSCs have beneficial effects on Parkinson's models. The main purpose of this research was to investigate the...
متن کاملRole of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line
Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...
متن کامل